كاربردهاي شبيه سازي مونت كارلو

مسائلي كه با استفاده از روش هاي متنوع شبيه سازي مونت كارلو قابل حل بوده اند را مي توان به دو گروه كلي مسائل قطعي و مسائل احتمالي تقسيم بندي نمود كه رويه ها و فرآيندهاي مربوط به هر دو گروه بطور مستقيم با فرآيندهاي تصادفي در ارتباط بوده اند. در اين گونه از مسائل يكي از ساده ترين راه حل ها، استفاده از رويه هاي مربوط به شبيه سازي مونت كارلو بوده كه در آنها در گام اول اعداد تصادفي موجود را مشاهده نموده و سپس در گام بعد به دنبال روشي جهت شبيه سازي مستقيم فرآيندهاي تصادفي مربوط به مسئله اوليه بوده ايم و در ادامه راه حلي منطقي و مطلوب از شبيه سازي اعداد تصادفي استنتاج مي نماييم.

مطالعه در مورد ميزان رشد جمعيت حشرات با در نظر گرفتن فرضيات آماري مشخص در مورد زنده ماندن آنها و مطالعات مربوط به طراحي راكتورهاي هسته اي نمونه هايي از مسائل احتمالي بوده كه با استفاده از روش هاي شبيه سازي مونت كارلو قابل حل بوده اند. اين مسائل و مسائلي مانند آنها، مسائلي بوده اند كه تا قبل از پيدايش روش هاي مونت كارلو  روش هاي قابل قبولي جهت حل آنها وجود نداشته است، اما با پيدايش و استفاده از روش هاي شبيه سازي مونت كارلو اين گونه مسائل نيز قابل حل گشته اند.

از سوي ديگر يكي از مهمترين نقاط قوت رياضيات تئوري، كه در آن به دنبال نتيجه گيري و كشف ارتباطات از طريق قياس هاي منطقي بوده ايم در مقابل رياضيات كاربردي و عملي كه در آن نتيجه گيري و كشف روابط از طريق مشاهدات متنوع و گسترده حاصل مي شود، جامعيت آن بوده است بدين معني كه مسائل مربوط به اين شاخه از رياضيات را مي توان با استفاده از علائم و روابط كلي مطرح و حل نمود. البته مزيت پيش گفته ممكن است اين عيب را نيز به همراه داشته باشد كه رابطه نهايي توليد شده در مورد اين مسائل ممكن است آن چنان پيچيده و مشكل شده باشد كه ديگر قابل حل حتي از طريق روش هاي عددي نيز نباشند.

ايده اصلي مربوط به مسائل قطعي كه با استفاده از روش هاي شبيه سازي مونت كارلو قابل حل بوده اند نيز مربوط به اين گروه از مسائل رياضي و جهت رفع عيب گفته شده در خصوص اين مسائل بوده است. روش هاي شبيه سازي مونت كارلو با استفاده از فرآيندهاي تصادفي سعي مي نمايند جواب هايي قابل قبول براي مسائل قطعي كه در رياضيات تئوري قابل مشاهده بوده است ارائه نمايند و به اين ترتيب راه حلي عددي براي اين گونه مسائل عرضه نمايند. براي مثال مسئله اي در تئوري الكترومغناطيسي كه نيازمند حل با استفاده از رابطه لاپلاس و با شرايط مرزي مشخصي بوده است نمونه اي از گونه مسائل پيش گفته بوده است كه مي توان آن را با استفاده از روش شبيه سازي مونت كارلو حل نمود.

كاربردهاي شبيه سازي مونت كارلو بسیار متنوع بوده است، اما در حالت كلي مي توان تمامي آنها را در قالب دو گروه مسائل رياضي ذيل مطرح نمود:

  1. مسائلي كه نيازمند حل مشتقات جزئي بوده است.
  2. مسائلي كه نيازمند حل انتگرال بوده است.

گرچه گستره كاربرد روش هاي شبيه سازي مونت كارلو بسيار متنوع بوده است، اما با اين وجود دو گروه مسائل مطرح شده فوق عمده ترين مسائلي بوده اند كه با استفاده از شبيه سازي مونت كارلو مي توانيم آنها را حل نمائيم.

بر اساس قانون قوي اعداد بزرگ كه در سال 1971 میلادی توسط  فلر مطرح شده است، اگر مقدار N يعني تعداد اعداد تصادفي انتخاب شده يا تعداد تكرارهاي شبيه سازي در روش شبيه سازي مونت كارلو به سمت بي نهايت ميل نمايد ميزان خطاي اين روش نيز به سمت صفر ميل نموده و در اين حالت مقدار دقت جواب حاصله از اين روش حداكثر بوده است.

دقت روش هاي شبيه سازي مونت كارلو  به صورت نسبتي از  مطرح بوده است كه در آن مقدار N بيانگر تعداد نقاط تصادفي بوده است. اين رابطه نشان مي دهد كه جهت دستيابي به دقت مورد نياز بايستي تعداد نقاط تصادفي و به بياني ديگر تعداد تكرارهاي مربوط به شبيه سازي را افزايش داد و هر چقدر اين مقادير را افزايش داد دقت جواب مسئله نيز بيشتر و خطاي مربوط به آن كمتر خواهد شد. روش هاي متعددي مطرح شده اند تا تعداد تكرارهاي شبيه سازي در روش هاي مونت كالو را كاهش داده و در عين حال دقت مورد نياز را نيز بدست آورند كه دو نمونه از روش هاي مطرح در اين خصوص استفاده از روش هاي كاهش واريانس و استفاده از دنباله هاي كم پراكنده بوده است. ( معارفيان، 1389 ،ص71-73)

لينک جزييات بيشتر و دانلود اين پايان نامه:

ارزیابی نوسانات قیمت سهام با استفاده از شبیه سازی مونت کارلو